Ann Arbor
Data-Driven Extreme Response Estimation
Edwards, Samuel J., Levine, Michael D.
A method to rapidly estimate extreme ship response events is developed in this paper. The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation. More focus is placed on larger responses by isolating the time-series near peak events identified in the lower-fidelity simulations and training on only the shorter time-series around the large event. The method is tested on the estimation of pitch time-series maxima in Sea State 5 (significant wave height of 4.0 meters and modal period of 15.0 seconds,) generated by a lower-fidelity hydrodynamic solver known as SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP). The results are also compared with an LSTM trained without special considerations for large events.
Efficient Contextual LLM Cascades through Budget-Constrained Policy Learning
Recent successes in natural language processing have led to the proliferation of large language models (LLMs) by multiple providers. Each LLM offering has different inference accuracy, monetary cost, and latency, and their accuracy further depends on the exact wording of the question (i.e., the specific prompt). At the same time, users often have a limit on monetary budget and latency to answer all their questions, and they do not know which LLMs to choose for each question to meet their accuracy and long term budget requirements.
DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion Score Blending for 3D Computed Tomography Reconstruction
Diffusion models face significant challenges when employed for large-scale medical image reconstruction in real practice such as 3D Computed Tomography (CT). Due to the demanding memory, time, and data requirements, it is difficult to train a diffusion model directly on the entire volume of high-dimensional data to obtain an efficient 3D diffusion prior. Existing works utilizing diffusion priors on single 2D image-slice with hand-crafted cross-slice regularization would sacrifice the z-axis consistency, which results in severe artifacts along the z-axis. In this work, we propose a novel framework that enables learning the 3D image prior through position-aware 3D-patch diffusion score blending for reconstructing large-scale 3D medical images. To the best of our knowledge, we are the first to utilize a 3D-patch diffusion prior for 3D medical image reconstruction. Extensive experiments on sparse view and limited angle CT reconstruction show that our DiffusionBlend method significantly outperforms previous methods and achieves state-of-the-art performance on real-world CT reconstruction problems with high-dimensional 3D image (i.e., 256 256 500). Our algorithm also comes with better or comparable computational efficiency than previous state-of-the-art methods.
Smoothed Online Classification can be Harder than Batch Classification
We study online classification under smoothed adversaries. In this setting, at each time point, the adversary draws an example from a distribution that has a bounded density with respect to a fixed base measure, which is known apriori to the learner. For binary classification and scalar-valued regression, previous works [Haghtalab et al., 2020, Block et al., 2022] have shown that smoothed online learning is as easy as learning in the iid batch setting under PAC model. However, we show that smoothed online classification can be harder than the iid batch classification when the label space is unbounded. In particular, we construct a hypothesis class that is learnable in the iid batch setting under the PAC model but is not learnable under the smoothed online model. Finally, we identify a condition that ensures that the PAC learnability of a hypothesis class is sufficient for its smoothed online learnability.
Online Classification with Predictions
We study online classification when the learner has access to predictions about future examples. We design an online learner whose expected regret is never worse than the worst-case regret, gracefully improves with the quality of the predictions, and can be significantly better than the worst-case regret when the predictions of future examples are accurate. As a corollary, we show that if the learner is always guaranteed to observe data where future examples are easily predictable, then online learning can be as easy as transductive online learning. Our results complement recent work in online algorithms with predictions and smoothed online classification, which go beyond a worse-case analysis by using machine-learned predictions and distributional assumptions respectively.
PARQ: Piecewise-Affine Regularized Quantization
Jin, Lisa, Ma, Jianhao, Liu, Zechun, Gromov, Andrey, Defazio, Aaron, Xiao, Lin
Modern deep learning models exhibit exceptional vision and language processing capabilities, but come with excessive sizes and demands on memory and computing. Quantization is an effective approach for model compression, which can significantly reduce their memory footprint, computing cost, as well as latency for inference (e.g., Han et al., 2016; Sze et al., 2017). There are two main classes of quantization methods: post-training quantization (PTQ) and quantization-aware training (QAT). Both are widely adopted and receive extensive research--see the recent survey papers (Gholami et al., 2022; Fournarakis et al., 2022) and references therein. PTQ converts the weights of a pre-trained model directly into lower precision without repeating the training pipeline; it thus has less overhead and is relatively easy to apply Nagel et al. (2020); Cai et al. (2020); Chee et al. (2024). However, it is mainly limited to 4 or more bit regimes and can suffer steep performance drops with fewer bits Yao et al. (2022); Dettmers & Zettlemoyer (2023). This is especially the case for transformer-based models, which prove harder to quantize Bai et al. (2021); Qin et al. (2022) compared to convolutional architectures Martinez et al. (2019); Qin et al. (2020). On the other hand, QAT integrates quantization into pre-training and/or fine-tuning processes and can produce low-bit (especially binary) models with mild performance degradation (e.g.
Using Language Models to Decipher the Motivation Behind Human Behaviors
Xie, Yutong, Mei, Qiaozhu, Yuan, Walter, Jackson, Matthew O.
AI presents a novel tool for deciphering the motivations behind human behaviors. We show that by varying prompts to a large language model, we can elicit a full range of human behaviors in a variety of different scenarios in terms of classic economic games. Then by analyzing which prompts are needed to elicit which behaviors, we can infer (decipher) the motivations behind the human behaviors. We also show how one can analyze the prompts to reveal relationships between the classic economic games, providing new insight into what different economic scenarios induce people to think about. We also show how this deciphering process can be used to understand differences in the behavioral tendencies of different populations.
Conditionally-Parameterized, Discretization-Aware Neural Networks for Mesh-Based Modeling of Physical Systems
Simulations of complex physical systems are typically realized by discretizing partial differential equations (PDEs) on unstructured meshes. While neural networks have recently been explored for the surrogate and reduced order modeling of PDE solutions, they often ignore interactions or hierarchical relations between input features, and process them as concatenated mixtures. We generalize the idea of conditional parameterization - using trainable functions of input parameters to generate the weights of a neural network, and extend them in a flexible way to encode critical information. Inspired by discretized numerical methods, choices of the parameters include physical quantities and mesh topology features. The functional relation between the modeled features and the parameters is built into the network architecture. The method is implemented on different networks and applied to frontier scientific machine learning tasks including the discovery of unmodeled physics, super-resolution of coarse fields, and the simulation of unsteady flows with chemical reactions. The results show that the conditionallyparameterized networks provide superior performance compared to their traditional counterparts. The CP-GNet - an architecture that can be trained on very few data snapshots - is proposed as the first deep learning model capable of standalone prediction of reacting flows on irregular meshes.
Fusion of Indirect Methods and Iterative Learning for Persistent Velocity Trajectory Optimization of a Sustainably Powered Autonomous Surface Vessel
Govindarajan, Kavin M., Agrawal, Devansh R, Panagou, Dimitra, Vermillion, Chris
In this paper, we present the methodology and results for a real-time velocity trajectory optimization for a solar-powered autonomous surface vessel (ASV), where we combine indirect optimal control techniques with iterative learning. The ASV exhibits cyclic operation due to the nature of the solar profile, but weather patterns create inevitable disturbances in this profile. The nature of the problem results in a formulation where the satisfaction of pointwise-in-time state of charge constraints does not generally guarantee persistent feasibility, and the goal is to maximize information gathered over a very long (ultimately persistent) time duration. To address these challenges, we first use barrier functions to tighten pointwise-in-time state of charge constraints by the minimal amount necessary to achieve persistent feasibility. We then use indirect methods to derive a simple switching control law, where the optimal velocity is shown to be an undetermined constant value during each constraint-inactive time segment. To identify this optimal constant velocity (which can vary from one segment to the next), we employ an iterative learning approach. The result is a simple closed-form control law that does not require a solar forecast. We present simulation-based validation results, based on a model of the SeaTrac SP-48 ASV and solar data from the North Carolina coast. These simulation results show that the proposed methodology, which amounts to a closed-form controller and simple iterative learning update law, performs nearly as well as a model predictive control approach that requires an accurate future solar forecast and significantly greater computational capability.
Training Human-Robot Teams by Improving Transparency Through a Virtual Spectator Interface
Dallas, Sean, Qiang, Hongjiao, AbuHijleh, Motaz, Jo, Wonse, Riegner, Kayla, Smereka, Jon, Robert, Lionel, Louie, Wing-Yue, Tilbury, Dawn M.
After-action reviews (AARs) are professional discussions that help operators and teams enhance their task performance by analyzing completed missions with peers and professionals. Previous studies that compared different formats of AARs have mainly focused on human teams. However, the inclusion of robotic teammates brings along new challenges in understanding teammate intent and communication. Traditional AAR between human teammates may not be satisfactory for human-robot teams. To address this limitation, we propose a new training review (TR) tool, called the Virtual Spectator Interface (VSI), to enhance human-robot team performance and situational awareness (SA) in a simulated search mission. The proposed VSI primarily utilizes visual feedback to review subjects' behavior. To examine the effectiveness of VSI, we took elements from AAR to conduct our own TR, designed a 1 x 3 between-subjects experiment with experimental conditions: TR with (1) VSI, (2) screen recording, and (3) non-technology (only verbal descriptions). The results of our experiments demonstrated that the VSI did not result in significantly better team performance than other conditions. However, the TR with VSI led to more improvement in the subjects SA over the other conditions.